
Automatically Learning an Intuitive Animation Interface  
from a Collection of Human Motion Clips 

 

Marcel Lüdi 
ETH Zürich 

 
Martin Guay 
Disney Research 

 

Brian McWilliams 
Disney Research 

 

Robert W. Sumner 
Disney Research 

 
 

 

Figure 1. From a disorganized set of human walking motions, we automatically learn an intuitive animation interface with 

3 sliders for synthesizing new human walking motions, similar to the ones in the data set. Our algorithm works without any 

alignment or pre-processing of the data set, and outputs parameters that make sense to humans. By modeling the space of 

motion as a deep neural network, and constraining the latent variables (our 3 controllers) to be as mutually independent as 
possible to each other, as well as to cover as wide variations as possible, we obtain parameters that are sensible to human 

interpretation. The first two dimensions control the left and right step length respectively, while the 3rd parameter controls 

turning left to right. The user presses “add frames” to generate and append a 1 second motion, to then manipulate the sliders 

again in a back-and-forth manner to generate longer walking motion sequences.  

ABSTRACT 

In this paper, we automatically learn interpretable low dimensional generative representations of human walking motions 

using a variational autoencoder. By modeling the latent space of an autoencoder as a low dimensional multi-variate gaussian 

distribution, we can optimize for an encoding that produces disentangled, independent components which explain most of 

the variation in the data. The latent variables our model learns are intuitive to humans and can be directly manipulated in a 

graphical user interface (GUI) via sliders, to generate new walking motions in real time. 

KEYWORDS 

Intuitive interface, character animation, motion manifold. 



1. INTRODUCTION 

Controlling the motion of a digital character is a challenging task as the dimensionality of the character’s 

digital representation is generally high. A long lasting goal of computer animat ion is to provide intuitive high-

level controls for character’s shape and motion (e.g. low dimensional parameterizations such as rigs). Data -

driven techniques allow generating various new motions similar to the examples in the data -set. However, the 

learned parameters are either too many, or not interpretable by humans for direct manipulation. For example, 

applying linear dimensionality reduction on human motion data does not lead to interpretable components, and 

is not fully automatic as it requires aligning the motion clips. 

Deep neural networks, and more specifically convolutional autoencoders, have been recently used to 

automatically learn low dimensional representations of human motion from disorganized motion clips  [Holden  

et al. (2016)]. However, the learned latent space could not be manipulated directly by humans, mainly due to 

three reasons. Firstly, the dimensionality required for successful reconstruction remains too high for human 

manipulation (256 dimensions). Secondly, the granularity of the latent variables can cause small changes in 

latent space to map to large changes in full space. And thirdly, entanglement in the network can cause the effect 

of individual latent variables to change when manipulating other variables. For example, a slider may control 

a foot position, while moving another slider changes the effect of the initial controller from moving the foot to 

moving a hand; as the network mixes the latent variables to reconstruct the motion. 

In this work, we automatically learn a disentangled latent space with low granularity that is interpretable 

by humans and that can be manipulated directly via GUI sliders to generate new motions in real time. We draw 

upon the concept of variational autoencoders (VAEs) [Kingma & Welling (2014)], and represent the latent 

space as a multi-variate gaussian distribution, allowing us to seek a large coverage for each dimension, as well 

as independence between the dimensions  during the training process. This is achieved by not only minimizing  

the traditional reconstruction cost w.r.t. network parameters, but also by penalizing deviations from a canonical 

multi-variate normal distribution, i.e. H∼N(0,I) in latent space, where each dimension should have standard 

deviation as close as possible to one. This prevents from learning a latent variable representation with extremely  

fine granularity, and also provides more independence between dimensions —thereby favoring 

disentanglement. As a result, each latent variable encodes a consistent portion of the motion space and the 

network preserves this consistency when changing the values of the other latent variables. 

While optimizing for independence in the VAE latent space has been successful with various data-sets 

before, such as 2D face images and digits  [Kingma & Welling (2014)], its application to 3D human motion is 

new and leads to challenges of its own. There is a tradeoff between the quality of the encoding and the 

meaningfulness provided by the disentanglement. Training directly for 3 dimensions that could be manipulated  

by a user leads to failures in the training process: the latent space is too small to successfully reconstruct the 

motion. By training a larger intermediate space of 20 dimensions, we obtain similar reconstruction quality, 

while at the same time obtaining independent latent variables that are interpretable by humans. However, 20 

dimensions still remains too many for intuitive use, and the latent variables are not ordered according to 

importance. Hence we further reduce the dimensionality to 3 using linear dimensionality reduction, which leads 

to a compact set of variables the user can manipulate directly to generate new motions —as shown in Fig. 1. 

In short, we reduce the space of one second motion clips (61 frames) for a 66 d.o.f. skeleton (i.e. 4026 

dimensions) to 20 dimensions with the VAE, and then reduce furthermore to 3 using a PCA. The first two 

components control the left and right step length respectively, and the third dimension controls turning left to 

right motions. Note that the effect of each slider remains consistent when modifying the other sliders. In our 

accompanying video, we show various examples of walking mot ions synthesized by sequentially appending 

one second motion clips generated by controlling our three sliders alone. 

 

2. RELATED WORK 

Learning generative models of motion. A large body of work utilizes statistical dimensionality reduction, 

both at the individual pose and animation clip levels, as an integral part of animation tools. In contrast to our 

work, the parameters of the learned models are not used by humans directly, but instead used to represent or 

constrain the character in various optimization-based tasks such as inverse kinematics [Grochow et al. (2004)], 



[Wei & Chai (2011)], [Holden et al. (2016)] or space-time optimization [Safonova et al. (2004)], [Chai & 

Hodgins (2007)], [Min et al. (2009)]. Additionally, training the model is not always fully automatic, or does 

not always succeed. For example, linear dimensionality reduction applied to motion clips —such as in 

[Safonova et al. (2004)], [Chai & Hodgins (2007)], [Min et al. (2009)]—requires first aligning the motion clips. 

Also, non-linear dimensionality reduction methods that can use fewer latent variables as the Gaussian Process 

Latent Variable Model (GPLVM) used in [Grochow et al. (2004)], does not scale to large data-sets. In contrast, 

our learning process is fully automatic, successful when trained over large data-sets, and produces model 

parameters that are intuitive enough for human users to manipulate directly. 

Similar to our work, Holden et. al [Holden et al. (2015)], [Holden et al. (2016)] use an autoencoder to 

automatically reduce a large disorganized data-set. In their work, they reduced down to 256 dimensions and 

the user cannot manipulate the latent variables directly as the granularity is high and the dimensions are 

entangled. In contrast, we reduce the latent space down to 3, and the effect of our latent variables on the motion 

remain consistent during editing—regardless of the configuration of the other dimensions. 

Manually parameterizing motion data-sets . Another line of work lets the user parameterize motions 

w.r.t. to meaningful dimensions. Rose et al. [Rose et al. (1998)], in their paper Verbs and Adverbs, allow the 

user to label motion clips of a given category (e.g. walks, referred to as verbs) along stylistic dimensions 

(referred to as adverbs), and interpolate between them using radial basis functions. State machines with blend 

trees are often used in games and interactive applications to parameterize the character’s motion w.r.t. a 

direction. While there has been works on automatically building motion parameterizations (e.g. [Kovar et al. 

(2002)] [Heck & Gleicher (2007)]), in practice they are built manually by taking perfectly aligned motion  clips. 

Deep Learning has proven very successful at finding intricate structures in high-dimensional data across 

various domains [LeCun et al. (2015)]. Deep learning algorithms are state-of-the art in object recognition 

[Krizhevsky et al. (2012)] [Ciregan et al. (2012)] and have been successful in video classification [Karpathy 

et al. (2014)], [Ji et al. (2013)] and speech recognition [Graves et al. (2013)]. Recently, there has been an 

interest in using deep convolutional network architectures as generative models to produce novel data from the 

network [Goodfellow et al. (2014)], [Vincent et al. (2010)]. The strength of deep conv. nets lies in their ability  

to automatically learn appropriate features in data-sets. For example, in image recognition, the first layers often 

produce filters similar to edge detection filters while deeper layers hold more complex filters corresponding to 

different objects [Zeiler & Fergus (2014)]. Our work applies deep conv. nets to learning a motion manifold of 

human motion.  

Du et al. use a hierarchical recurrent neural network trained on a large motion capture data -set to classify 

different motions [Du et al. (2015)] and achieve state-of-the-art action recognition performance. Taylor et al. 

[Taylor & Hinton (2009)], [Taylor et al. (2011)] use conditional Restricted Boltzmann Machines (RBMs) to 

learn a time-series predictor which can predict the next pose of a motion given several previous frames; with  

improvements made using the spike-and-slab version of the recurrent temporal RBM [Mittelman et al. (2014)]. 

Holden et al. [Holden et al. (2015)], [Holden et al. (2016)] use a convolutional autoencoder to automatically  

compute a low-dimensional latent representation of human motion, which is then used inside a path -based 

motion synthesis interface. It is worth noting that deep conv. nets have been used in other areas of computer 

animation such as for the control of simulated characters. The network typically represents both a value 

function and a state-action feedback function within a deep reinforcement learning framework. Levine et al. 

[Levine & Koltun (2014)] use a neural network to learn optimal control policies for bipedal locomotion   and 

[Peng et al. (2016)] for learning terrain-adaptive locomotion skills. 

Variational Autoencoders . Variational autoencoders (VAEs) [Kingma & Welling (2014)], [Rezende et al. 

(2014)] have emerged as a successful way to efficiently learn probabilistic generative models of complex data 

distributions. VAEs compress the data by representing it as a distribution over a low-dimensional latent space 

whose parameters are learned by an encoding network. The VAE objective aims to simultaneously minimize 

both the reconstruction error of the decoder network and the Kullback-Leibler (KL) divergence between the 

distribution over the latent space and a standard normal distribution. New data examples can then be obtained 

by decoding samples taken from the latent distribution. 

One well known problem with VAEs is that the latent variables are often uninterpretable. Recently, Higgins 

et al. [Rezende et al. (2014)] showed that with a minor modification – scaling the KL divergence by a factor, 

𝛽 – encourages the independence between the latent variables, resulting in disentangled representations which 

allows the latent variable to be directly interpretable.  



In this work, we apply the idea of optimizing for independence in latent space to the cas e of human walking 

motion. As a result, the disentangled latent variables are interpretable by humans and the user can directly  

manipulate them to generate new motion sequences. 

3. DATA ACQUISITION AND PRE-PROCESSING 

Motion capture data often have different skeleton sizes (bone lengths) and dimensionality (number of 

joints). We first describe how we convert different skeletons into a uniform skeleton. The motion representation 

fed into the network can impact the learning performance. We wish an encoding that is invariant to global 

translations and rotations. Hence we convert the motions into a local body frame coordinate system, with the 

origin located on the ground where the root position is projected onto. By representing each joint position 

relative to this body frame, we can also easily measure the dissimilarity between poses by measuring the 

Euclidian distance between joint positions. 

 
Animation Data 

The data-set we used is mainly composed of walking motions over flat terrain with various left and right 

turns. It holds a few backward walks, runs, and uneven terrain, but holds no side stepping. The captured motion 

clips are sampled at 120 frames per second and the final data-set contains approximately 1.5 million frames of 

walking motion. We gathered motion clips both from the CMU data-set [CMU (n.d.)], as well as our in-house 

produced motions—performed using a Perception Neuron system [Ltd (n.d.)]. 

 

Data Formatting 

We now convert the motion clips into a format suitable for training. First we reduce the temporal dimension 

by sub-sampling the clips at 60 frames per second by interpolating the joint angles for any missing poses. Then 

we convert the different skeletons into a common skeleton featuring 21 joints. We manually assign the 

correspondence between joints for the common skeleton. Given a joint correspondence, we transfer the joint 

angles and then scale the bone lengths to the target skeleton bone length. The final motion may still h old 

discrepancies, and thus we adjust the joint angles as to match the target skeleton as much as possible; using a 

full body inverse kinematics solve. 

To convert the skeleton into a body-local coordinate system invariant to global translation and rotation , we 

start by computing the global 3D joint positions of the character. Then we compute the forward direction of 

the character using the vectors between left and right shoulders, as well as left and right hips, averaging them 

and taking the cross product with the vertical up axis y. We compute the relative positional and rotational 

velocity of each frame w.r.t. its body frame (origin on the ground where the root is projected onto) and store 

the values. We emphasize that the relative positions of the joints are relative to the body frame and not to a 

world origin. 

Hence, the final global position of the animation is recovered by integrating the velocities of each frame 

over time. Finally, we compute the mean pose and standard deviation of the whole data set and normalize the 

each frame by removing the mean and dividing by the standard deviation —same is applied to the horizontal 

and rotational velocities. 

 

 

 

 

 

 

 

 

 

 

 



4. VARIATIONAL AUTOENCODER 

We model and train both an encoder 𝛷 and decoder 𝛷 †, but note that only the decoder is used for motion  

synthesis. The encoder 𝛷(𝑋) takes an input motion clip 𝑋 ∈ 𝑅𝑘×𝑑 of d joints by 𝑘 frames, and encodes it into 

a c-dimensional latent variable 𝐻 ∈ 𝑅𝑐. From the latent space, a decoder 𝛷 †(𝐻)  is used to compute a motion  

clip𝑋  of k frames. The full autoencoder architecture is shown in Fig. 2, and we start by describing the encoder 

and then the decoder. 

 

 
 

Figure 2: The structure of our variational autoencoder. The encoder represents the latent space as a multivariate gaussian 

distribution. During training, the mean and standard deviations are combined with a random sample to generate the latent 

sample corresponding to the input motion clip. See Training section for more details. 

 

Encoder 

The encoder takes an input animation X and processes it through a traditional convolutional network, with  

the difference that its last layer outputs a mean 𝛷𝜇 (𝑋) and standard deviation 𝛷log(𝜎 ) (𝑋) to represent the final 

latent space (as a multi-variate gaussian distribution). 

Hence, the input animation first goes through three convolutional layers each followed by a max pooling 

layer to reduce the temporal resolution: 

 

 𝛷 (𝑋) = 𝑅𝑒𝐿𝑈 (𝛹(𝑅𝑒𝐿𝑈 (𝛹(𝑅𝑒𝐿𝑈(𝛹(𝑋 ∗ 𝑊1 + 𝑏1)) ∗ 𝑊2 + 𝑏2)) ∗ 𝑊3 + 𝑏3)) (1) 
 

where 𝛹  is a max pooling layer in the temporal axis with a reduction factor of 2 and 𝑅𝑒𝐿𝑈(𝑥) is the 

nonlinear rectifying operation defined as 𝑅𝑒𝐿𝑈 (𝑥) = 𝑚𝑎𝑥(𝑥, 0). The operator * denotes a convolution using 

weight matrices 𝑊𝑖 ∈ 𝑅^(𝑚𝑖−1 × 𝑚𝑖 × 𝑤𝑖  ) (𝑚𝑖−1 is the number of units in the previous layer), 𝑤𝑖  the 

convolution filter width, and 𝑏𝑖 ∈ 𝑅𝑚𝑖  are the biases. 

After the three convolution layers, the sample goes through two separate fully connected layers resulting in 

the final the predicted mean and predicted standard deviation: 

 
𝛷𝜇 (𝑋) = 𝑓𝑙𝑎𝑡(𝛷 (𝑋)) ⋅ 𝑊𝜇 + 𝑏𝜇 ,

𝛷𝜎(𝑋) = 𝑓𝑙𝑎𝑡(𝛷 (𝑋)) ⋅ 𝑊𝜎 + 𝑏𝜎 ,
 

 

where here ⋅ denotes a matrix multiplication, with weights 𝑊𝜇 ∈ 𝑅
(𝑠⋅𝑚3

)×𝑐  and 𝑊𝑙𝑜𝑔 (𝜎) ∈ 𝑅
(𝑠⋅𝑚3

)×𝑐 (given 

s dimensions for each neuron at layer 3) and the 𝑓𝑙𝑎𝑡 () function reshapes the output to be one dimensional. In 

this case s is the number of units after convolutions (the before-last layer). The dimensionality of each layer of 

the encoder can be found in Fig. 2. 

Decoder 

The decoder 𝛷 † is similar to the encoder but in reverse order. It takes as input a latent space sample 𝐻 ∈
𝑅𝑐, processes it in a fully connected layer and then gives the result to a convolutional network which increases 

the temporal resolution with inverse pooling operations; each by a different margin. The inverse max pooling 

operation chooses the value of the closest hidden unit on the temporal axis. Hence after the inverse pooling, 

each neuron chooses its value based on the previous neuron that is closest temporally. The factor by witch the 

temporal dimension is up-sampled is chosen such that the original poses are still present in the new layer. This 

means that we actually gradually fill the holes in the animation by generating the missing frames. Finally the 

neurons are activated using a rectified linear operation, resulting in the decoder function: 



 

 𝛷 †(𝐻) = 𝛹† (𝑅𝑒𝐿𝑈(𝛹†(𝑅𝑒𝐿𝑈 (𝛹† (𝑓𝑙𝑎𝑡† (𝐻 ⋅ 𝑊0 + 𝑏0)) ∗ 𝑊1 + 𝑏1)) ∗ 𝑊2 + 𝑏2)) ∗ 𝑊3 + 𝑏3 (2) 

 

where 𝑓𝑙𝑎𝑡† reshapes the flat output of the fully connected layer for further processing into the 

convolutional layers. In this case, the output of the 𝑓𝑙𝑎𝑡† function is a matrix 𝐻′ ∈ 𝑅𝑠×𝑚0  where s is the number 

of frames after down sampling the original input and 𝑚0 is the number of hidden units in the first layer. 𝛹† 

denotes an inverse pooling operation. However, for decoding, the expansion factor is fixed to 2 for all layers 

to reflect the max pooling from the encoder. The output of this network is an animation clip 𝑋 ∈ 𝑅𝑛×𝑑  with 𝑛 

frames. 

5. TRAINING 

Given a collection of motion clips 𝑋, the autoencoder is trained to encode the motion clips into latent space 

and then decode them back into full space. We minimize the error between each initial clip and the 

reconstructed clip. The difference with traditional autoencoders is that we represent the latent variables as a 

multi-variate gaussian distribution and we maximize for independence (disentanglement) between components 

by penalizing each standard deviation from a value of one, which also provides large coverage for each 

dimension and prevents from high granularity. This is realized through a KL-divergence term that penalizes 

the distance of the gaussian distribution generated by the network 𝐻(𝛷𝜇 (𝑋), 𝛷𝜎(𝑋))to a canonical multi-variate 

gaussian distribution 𝑁(0, 𝐼) [Kingma & Welling (2014)]. Both terms together with additional sparsity 𝛾||𝜃||1 

encouraging fewer network parameters 𝜃, results in total cost: 

 

 𝐶𝑜𝑠𝑡(𝑋, 𝜃) = 𝛼||𝑋 − 𝛷 †(𝐻(𝛷𝜇 (𝑋), 𝛷𝜎 (𝑋)))||2
2 +  𝛽𝐾𝐿(𝛷𝜇 (𝑋), 𝛷𝜎(𝑋)) + 𝛾||𝜃||1, (3) 

 

where  

 

 
𝐾𝐿(𝜇, 𝜎) =

1

2
∑(

𝑐

𝑖=0

𝜇𝑖
2 + exp(log𝜎𝑖)

2 − 1 − 2log(𝜎)𝑖 ) 
 

(4) 

 

During training, the sample given to the decoder is computed using the generated mean and standard 

deviation from the encoder: 𝐻(𝛷𝜇 (𝑋), 𝛷𝜎 (𝑋)) = 𝛷𝜇(𝑋) + 𝜖 ∗ exp(log𝛷𝜎 (𝑋)), where 𝜖  is a random sample 

generated from a standard normal distribution ϵ∼N(0,1).  

At the start of training the 𝛽 is set to zero such that the network first learns a stable reconstruction before 

optimizing the distribution. Over the course of the session 𝛽 gets increased using a sigmoid function which lets 

the network adapt to the additional cost term. 

The training of the network is similar to training a traditional autoencoder. The weights are initialized using 

the “fan-in” and “fan-out” criteria, while the biases are initialized to zero. The motion clips are randomly drawn 

from the database and the cost function is minimized using stochastic gradient descent with derivatives 

computed via Tensorflow  [Abadi et al. (2015)], internally using the adaptive gradient descent algorithm Adam. 

To avoid over fitting to the training data, we used a dropout of 0.2. The variational au toencoder is trained over 

200 epochs on two NVIDIA Titan X GPUs. 

Figure 3 shows the evolution of the error during training. The autoencoder first learns a hidden 

representation of the input before being exposed to the KL-divergence term, i.e. before increasing β. Once it 

reaches a certain value, the reconstruction error increases to minimize the additional KL-divergence cost. 

 

 
 



Figure 3: Value of the loss function during the training of our variational autoencoder. The l2-loss is the reconstruction 

error and the l1-loss is the regularization term. 
 

Linear Reduction 

We reduced the full space of one second walking motion clips to 20 latent variable spaces. To further reduce 

the hidden space dimensions, we apply linear dimensionality reduction (principal component analysis) on a 

subset of the motion clips, and extract the 3 most significant components for the user to manipulate. We first 

encode the subset of motion clips using the encoder. We compute a linear projection matrix from the encoded 

motion clips, which allow us to map a 3 dimensional space to the 20 dimensional latent space. As a result, the 

user can manipulate the 3 sliders shown in Fig. 1 to generate believable motions. 

6. RESULTS 

Our variational autoencoder was trained on the walking motion data-set described in Section 3. We 

implemented an interactive interface to visualize the reconstructed motions, which is shown both in Fig. 1 and 

the accompanying video. The user can change either the hidden units (1 of the 20 values), or the final reduced 

3 which map to the 20 dimensions. Evaluating the network is fast: from the hidden values, we can synthesize 

a one second motion clip and render the animation instantly—in real-time. 

The initial 20 dimensions are disentangled and some of the variables play a c lear role such as turning or 

stepping length, while others have a smaller influence on the resulting motion. To reduce the number of 

redundant dimensions, we performed principle component analysis (PCA) on the latent values computed with  

a subset of the training data (in Section 5). This way, we can retain only the three most important components, 

leaving out those that had little influence on the motion. 

The first two components are associated with the left and right legs. Their magnitudes control the step  

length: a large value for the first component control step length of the left leg, and the second for the right leg. 

The sign of the components control the phase of the walk: a negative value for the left leg takes a first step 

with the left leg, while a positive value shifts the step later in time. In Fig. 4 we show the first pose generated 

by manipulating these two components. 

The third dimension controls the direction in which the character turns. A negative value creates a rotation 

to the left while a positive value turns in the other direction. Given only these three components, we were able 

to generate a variety of motions, as shown in the accompanying video. Naturally, further customization and 

refinement is possible by manipulating some of the individual hidden components (one of the 20 sliders). While 

the effects on the motions can be subtle, they can provide additional leaning to the right or to the left, or 

hunching/straightening of the back. 

Finally, to generate a longer motion, the user appends several motion clips generated from the three controls 

sequentially. We blend the synthesized motions over a small temporal window. To facilitate the generation of 

the next sequence the starting point of the character is set such that the beginning matches  the end of the 

previous animation as closely as possible. To this end the first two dimensions are reversed to change the 

starting leg of the animation. 

 



 
Figure 4: The first two components of the low-dimensional space and their effect on the first pose of the motion. The first 

dimension (x axis in pink) controls the left leg. Its magnitude controls the length of the step while the sign controls the 
phase of the step, where a positive value causes the left leg to take a first step. The second dimension (y  axis in blue) is 

analogous to the first but for the right leg. 

 
Comparing with PCA on Full Space 

In practice non-linear dimensionality reduction techniques such as the GPLVM do not scale well to large 

data sets. Hence in practice, principal component analysis is used in animation, but this requires aligning the 

motion clips. We demonstrate here that a PCA cannot be applied directly to the full space to automatically  

extract meaningful parameters. 

We take the normalized training set and subtract the per clip mean. Each motion clip corresponds to a 4026 

dimensional point and we reduced it to 5. Unlike with the VAE, none of the first 5 components could capture 

body movement and they could only capture full body positioning. In other words, the PCA directly app lied to 

the full space cannot compute useful dimensions interpretable by humans. In contrast, we automatically 

compute roughly disentangled latent dimensions. That is, the effect of a latent variable on the motion remains  

same—regardless of the values of the other dimensions. 

7. LIMITATIONS AND FUTURE WORK 

Because we optimize for large standard deviations (close to 1), and because our model hold few latent 

variables—the reconstruction error can be larger than with a traditional autoencoder. On the other hand, each 

dimension is more independent and better suited for human interpretation. 

An important parameter in our model is the latent space dimensionality. In practice there is a trade -off 

between having few dimensions and the quality of the reconstruction. Our goal is to obtain few dimensions, 

but in our experience less than 20 resulted in substantially low reconstruction errors. With too few latent 

components, the model cannot capture enough variation to generate believable results. We were successful by 

training an intermediate disentangled latent space and then further reducing to 3 using linear dimensionality  

reduction. In the future we will investigate ways of ordering the dimensions with respect to their importance 

during the optimization process directly. 

Related to the number of latent variables is the length of the input motion sequence. Longer clips require 

the model to be more expressive meaning the number of latent variables required is higher for accurate 

reconstruction. After experimentation, we chose 61 frames covering a range of 1 second motions. In this time, 

a normal walking motion takes about two steps which lends itself well as a cutting point. The filter widths are 

chosen such that they cover the whole clip. Increasing this value too much resu lts in smoothed out reconstructed 

motions, or sometimes even failure to converge. Setting too small a width will produce noisy outputs, as the 

system is not designed to learn the smoothness from the data alone. 



Finally, we trained our VAE mainly on forward walking motions with turns, which means we cannot 

generate backward or side stepping motions. This could be addressed by augmenting the data -set and giving 

equal importance to all the different types of motions. Learning transitions between different motion types, e.g. 

between walking and running remains an open question. We believe this may be possible to achieve in the 

future by interpolating in the appropriate latent space. 

8. CONCLUSION 

We applied the concept of a variational autoencoder to learn a low dimensional, generative representation 

of human walking motion. Within a fully automated process, we were able to reduce the space of one second 

human walking motions, down to 3 dimensions, that the user can directly use to generate novel walking  

sequences (as shown in Fig. 1). The main benefit of our approach is that the learning process automatically  

identifies disentangled latent variables, whose effect remains consistent throughout the editing process. Hence, 

the variation induced by each dimension on the generated motion is consistent and interpretable by a human. 

As a consequence, the latent variables can be directly manipulated via sliders to create believable animations; 

including walking around corners as well as taking long or short steps, as shown in our accompanying video. 

In the future, we plan on extending this approach to other types of motions such as running, as well as for 

automatically learning stylistic attributes. 
 

ACKNOWLEDGEMENT 

A brief acknowledgement section may be included here. 

REFERENCES 

Abadi, M. et al, 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. http://tensorflow.org/ 

Chai, J. & Hodgins, J. K, 2007. Constraint-based motion optimization using a statistical dynamic model.  ACM 

Transactions on Graphics (TOG) Vol. 26. 

Ciregan, D. et al, 2012. Multi-column deep neural networks for image classification. In Computer Vision and Pattern 

Recognition (CVPR), 2012 IEEE Conference on, IEEE. pp. 3642–3649. 

CMU (n.d.). Carnegie Mellon University Mocap Database. http://mocap.cs.cmu.edu/ 

Du, Y. et al, 2015. Hierarchical recurrent neural network for skeleton based action recognition. In Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition. pp. 1110–1118. 

Goodfellow, I. et al, 2014. Generative adversarial nets. In Advances in Neural Information Processing Systems. pp. 2672–

2680. 

Graves, A. et al, 2013. Speech recognition with deep recurrent neural networks. In 2013 IEEE international conference on 
acoustics, speech and signal processing, IEEE. pp. 6645–6649. 

Grochow, K. et al, 2004. Style-based inverse kinematics. ÁCM Trans. Graph. Vol.  23, No. 3, pp. 522–531. 

Heck, R. & Gleicher, M, 2007. Parametric motion graphs. In Proceedings of the 2007 Symposium on Interactive 3D 

Graphics and Games, I3D ’07, ACM. New York, NY, USA, pp. 129–136. 

Holden, D. et al, 2016. A deep learning framework for character motion synthesis and editing. ACM Trans. Graph. Vol. 
35, No. 4, pp. 138:1–138:11. 

Holden, D. et al, 2015. Learning motion manifolds with convolutional autoencoders. In SIGGRAPH Asia 2015 Technical 

Briefs, SA ’15, ACM. New York, NY, USA, pp. 18:1–18:4.  

Ji, S. et al, 2013. 3d convolutional neural networks for human action recognition. IEEE transactions on pattern analysis 

and machine intelligence. Vol. 35, No. 1, pp. 221–231. 

Karpathy, A. et al, 2014. Large-scale video classification with convolutional neural networks. In Proceedings of the IEEE 

conference on Computer Vision and Pattern Recognition. pp. 1725–1732. 

Kingma, D. P. & Welling, M, 2014. Auto-encoding variational bayes. International Conference on Learning 
Representations, ICLR . 



Kovar, L. et al, 2002. Motion graphs. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive 

Techniques, SIGGRAPH ’02, ACM. New York, NY, USA, pp. 473–482. 

Krizhevsky, A. et al, 2012. Imagenet classification with deep convolutional neural networks. In Advances in neural 

information processing systems. pp. 1097–1105. 

LeCun, Y. et al, 2015. Deep learning. Nature. Vol. 521, No. 7553, pp. 436–444. 

Levine, S. & Koltun, V, 2014. Learning complex neural network policies with trajectory optimization. In ICML. pp. 829–

837. 

Ltd, N. (n.d.). Perception Neuron. https://neuronmocap.com/content/axis-neuron-software 

Min, J. et al, 2009. Interactive generation of human animation with deformable motion models. ACM Transactions on 

Graphics (TOG). Vol. 29. 

Mittelman, R. et al, 2014. Structured recurrent temporal restricted boltzmann machines. In Proceedings of the 31st 

International Conference on Machine Learning (ICML-14). pp. 1647–1655. 

Peng, X. B., 2016. Terrain-adaptive locomotion skills using deep reinforcement learning. ACM Transactions on Graphics 

(Proc. SIGGRAPH 2016). Vol. 35, No. 4. 

Rezende, D. J. et al, 2014. Stochastic backpropagation and approximate inference in deep generative models. In 

Proceedings of the 31st International Conference on Machine Learning (ICML-14). pp. 1278–1286. 

Rose, C. et al, 1998. Verbs and adverbs: Multidimensional motion interpolation using radial basis functions. IEEE 
Computer Graphics and Applications. Vol. 18, pp. 32–40. 

Safonova, A. et al, 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. In 

ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04, ACM. New York, NY, USA. pp. 514–521.  

Taylor, G. W. & Hinton, G. E, 2009. Factored conditional restricted boltzmann machines for modeling motion style. In 

Proceedings of the 26th annual international conference on machine learning, ACM. pp. 1025–1032. 

Taylor, G. W. et al, 2011. Two distributed-state models for generating high-dimensional time series. Journal of Machine 

Learning Research. pp. 1025–1068. 

Vincent, P. et al, 2010. Stacked denoising autoencoders: Learning useful representations in a deep network with a local 
denoising criterion. Journal of Machine Learning Research. pp. 3371–3408. 

Wei, X. & Chai, J, 2011. Intuitive interactive human-character posing with millions of example poses. IEEE Comput. 

Graph. Appl. Vol. 31, No. 4, pp. 78–88. 

Zeiler, M. D. & Fergus, R, 2014. Visualizing and understanding convolutional networks. In European Conference on 

Computer Vision. pp. 818–833. 

 

 


